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SUMMARY

A recurrence formula is developed for the stress analysis of
reinforced circular cylindeors loaded iu tlie planes of their rings.
In contrast to the elementary engineering analysis, deformations
of rings and sheet are considersd. The recwrrence formule in
conjunction with appropriate boundery equations can be used to
obtain sets of simulbaneous linear algebraic equations. The solu-
tions of these equations enable the stress analyst to Find the
shear flows and direct stresses in the sheet, as well as the
shear forces, axlal forces, snd bending mcments in the rings.

In order to reduce the amount of computation involved in the
stress analysis of relatively long reinforced cylinders, an epproxi-
mate method of analysis is presented. In this method the cylinder
under consideration is assumed to be infinitely long, and the
recurrence Fformulas is treated as a fourth-order fini'be-d;ifference
equation. Tt is recommended thet the spproximate sclution be
utilized for the stress analysis of cylinders loeded at rings
located two or more bays from external restrainus.

TWTRODUCTION

Experimentel data on stresses in reinforced circuwlar cylinders
indicate the inadeoquacy of the elementary thecxry of bending &nd
torsion when applied to the relatively fleoxible shell structures
used in airframe construction. Several investlszgators have pre-
sented methods for the stress analysis of cylinders laterally loaded
at the reinforcing rings (references 1 to 3). The theory of refer-
ence 1, developed only for the case of a one bay cylinder, involves
the assumption that stringer strains can be entirely neglected and,
consequently, leads to imaccurate results. The more precise theory
of references 2 and 3, developed for cantilevercd cylinders having
identical bays, beccmes tedious and unwieldy when extended to non-
uniform cylinders.
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The present paper contains the development of & generzsl
recurrence formula sultable for the stress analysis of cylinders
that may be nonuniform in construction, arbitrarily supported at
the boundaries, and arbitrarily loaded in the planes of the rein-
forcing rings. The development ig based upon tho maintenance of
continuity of deformntion between the ringeg and shell. In eny
particular problem the recurrence formnla together wlth appro-
Ppriate boundary equations are uged to obtain sets of simultancous
linear equations for the corrections to the stresses glven by the
elementary theory. (For a cantllevered uniform cylimder the results
obtained in this manner are identical with those obtained by the
mothod of reference 2 or 3.) ' '

If 2 cylinder is composed of many bays, as in convontional
fusclage construction, the number of simultanoous equations
requiring consideration may be prohibitive. Fdr a wniform cylinder,
however, good epproximations to the corroction strosscs can be
obtained if the cylinder is assumed to be infinitely long. The
recurrence formula for this case is solved as a hcmogeneous finite 41f-
ference equation of the fourth order and yilelds a relatively simple solu-~
tlon. For practical purposes this solution cen be appiied to
arbitrarily supportoed cylinders provided the loads sre located a
few bays from exbternsl restraints. When the recurrence formula, .
together with the boundary equations presented, is applied to a
cantilevered uniform cylinder discussed in reference 3, good agree-
ment 1s obtained smong the recurrence=farmula solubtion, difference- ’
equation solution, and experimental stroesses. -

SYMBOLS
64
A= BE _ L
1.3
2
, . - . - -
B = ZLR ' il
GL2 -
c function of ring loading
2 - '
D, = _(EE____) _ _
7 2 '

n

E Young's modulus
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G shear medulus

H axial force in ring

I moment of Inertia of cross section

L length of bay

M bending moment

M, concentrated ring bending moment

P radial load

Q gtatio moment about neubtral axls of cross-sectional area
lying between extreme fiber and plane under considera-
tion . . o ) ’

R radius of cyl:‘_nzder. and rins'

tangential load on ring

v shear force -

a, b Fourler coefficiénts 1d Fourier éx:pangions of gq

c distance from neutral axis - T |

i, k general mumbors of bay or ring

m designation of rooilslbaI;; | i - :

n genersl number of Fouréler coefficlent |

q shear flow in skin

5 thickness of skin

! effective sheet thicknese, that is, thickness of all

material carrying bending stresses in cylinder if
wuniformly dlstributed around perimeter

n, v, w axial, btangential, end radilal displacements of points
on cylinder

X, ¥, 2 axial, tangential, and radial coordinatos of cylindor
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o arblitrary constent of integration
B =34 n2 + 3B
o 34y
2
yo= -2 8B
n 124y
y = 1

nz(ﬁg-- l)e

A, B, V . constants dependent upon bay lengthsa

S
1 -118np - 1 (ﬁn+l) z
= -~ cosh - -
Pp = 2 \/ z ) " 7'a

2
o] longitudinal direct stress in skin

¢ angular coordinate of point on cylinder

. " . 2
-1iBp = L Bp + L\ 2
\Vn = g cosh ll n2 + \f( n2 ) - ')‘n

e
_1  =1iPn -1 1B o+ 1\ 2
R e \[(T‘ G

Subscripts:

R rigld
m : moment
T radial

t tangentlal
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STRESS ANALYSIS OF REINFORCED CYLIKDERS

Inadequacy of Elementary Thecry

The elemsmnbary engineering theory for bending and torsion of
reinforced cylinders loaded at the ring relnforcements ylelds the
well-known formulas Mc/I for direct bending stress, VQ/It for
shear stress due ‘o bending, and T/2At for shear stress due to
torsion (vhere T and A are the torgue on cross section and the
area inclosed by perimeter o¢f cross section, respectively). This
simple theory is based upon the assumption that radisl dilsplace-
ments of both rings and shest can be neglected. BSince the dimen-
sions of most wmonocoque struchbures are such that radial displace-
ments of the structursl componenta carmot be ignored without
appreclabls inscouracies ixr “he results of analysls, the elementary
theory must be modified & &% not only %to satisfy the laws of
statica but also to maindein continuity between rings and sheet.
The present development, consequently, 1s dirscted towards finding
self-equilibreting streses distributions that, when superimposed
upon the elementary stress distributions, yleld results which, in
addition to satisfylng the laws of statlcs, presserve the continuity
of the sitructure. These corrsction stresses are found from the
recurrence formula that is developed herein. '

Basic Assuxptions of Present Theory

In the devslopment of the recurrence formula that can be
used to obtain the desired stress corrections, several simplifying
aesgurptions ars made. That part of the sheet area which is con-
gidered Yo resist normal stresses is added to the sbtringer area
and the combination is uniformly distribubted about the periphery
of the cylinfer. This resulting comblnation is an effectlive sheet
thickness +t' <+that resists normal stresges. The actual sheet area
18 considered capsble of supporting only shear stresses. It then
follows that within a bay the shear stresses vary in the circum-
ferential directlon but are constant in the longituiinal direction.
Insxtensional defoimation of rings and sheet 1s also aesumed, and
Poisson's ratio is considered to be zero.

Develomment of Recurrence Formula

Procedure.- For the skin of any bay i of the structure (see

figs. 1 and 2), the corrections to the elementary shesr flow,
direct stress, axial displacemsnt, and radial displacement ere
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each expressed as Fourler series with undedermined Fourler coef-
ficients. Through static, elastlic, and geomeltric conslderations
of rings and sheet, a recurrence formula is obtained relating the
Fourler coefflcient of the shear flow of any bay i with the coef-
Plcients of the two bays on each side of bay i, that is, bays 1+l
and i+2 and bays i-1 and 1-2. From bhe recurrence formula, simul-
taneous equabions may be obtained from which the valuss of the
ghear-flow coafficients are determined. With these values the
loads end stresscs in the rings and sheet can be found.

Sheet gtresses and deformations.- The system of coordinate
axes to te used is shown in figures 1 and 2. Positive displace-
ments in x-, y-, and z-directions are designated u, v, and w,
respectively. For convenlence, the exhernal loading cn the rein-~
forcing rings of a cylinder is considered to De either symmetrical
or anbleymretrical ebout ¢ = 0°. (Sce figs. 1 and 2.) In accord-
ance with the basic essumpiions the correctlons to the elementary
shear flow, direct sbtress, axial displacement, and redial displaco-
ment at any point (xi, cp) in bay i cén be expressed for symmet-

rical loading as the Fourier expansiong

0,(®) = ) e, sinnp (1a)

> Te

(o2}

ci(xi, cp) = z Gin(xi) cos ngp (1v)

n=2

ui(xi’ q)) = ﬁ)__.. uin(’ﬁ) cos ng - (1)

o]

wi(xi, cp) = Z win(xi) cos no (13)

n==2
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respectively, in which 84ns “in("-i ), uin(xi), and Win(’?i}- are
Fourier coefficients. Inasmich as only correctlons to the ele-
mentary stresses and displacements are-desired, Fourler terms
corresponding o n =0 eand n=1 are amitted since they carre-
spond to the elementary stress and, d:lsplacemn’c. distri'butions. :

If antisymmetricael loading is considered the harmonlic func-
tions in equations (1) are rsplaced. by their cofu*ctions. It is
then convenient to deslagnate the Fourier coeff" cien'b of the shear
flow by Dbyp-

Relationships among sheet stresses and dePormations.- Within
any bay i the following relationships exist (fig. 2)t by the: .-
- squil Abrivm equation ' B B

-.. 't.‘_’ . 1\3?;1:. (P' N _]: Oq_i(q)) -0 R R L (2&)
dxy R _
by Hooke's law for direct stress
dus O e e e
o'i(xi’ cp)|=aE ,ul(J%"-' ) el P S .(eb)
oy

by Hooke's law for' ghear stress -

_‘1_1_(_?_)__ ! ou 1("1: ‘?) a"*( *is, q’). :
Ea e .

Gty R Bxi
end by. the inextensionsl deformation equation -(p. '208'c;f "r'éfex:--“
ence 4)
- OVilXys @ -
— 5 ~mlmse) =0 (2a)
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vwhere

'bi actual skin thickness of bay i X
4] 'i effective skin thickness of bay 1

R radius of cylinder

E Young's modulus

G shear modulus

Vi (x.l ’ cp) circumferential displacement of any point in bay 1

If equations (la) and (1b) are substituted into equation (2a)
and if coefficients of like cosine terms are equated, the following
expresgion for the Fouwrier coefficlent Uin("i) ig obtained:

aoingxi) __.n

= 24n
A '
Bxi Rty

Integratlion of this equation yields

nxy
o1n(m) = - = o 4n(0) (3)

in vhich 04,(0) 1s the direct-stress Fourier coefficient at Xy = 0.

Similarly, elimination of Uin(xi) from equations (1b), (lc),
(2b), end (3) and subsequent integration gives

2

nxi X
wyn(zg) = - —n 0,,(0) + 1y, (0) (1)
ey -

in which u'in(O) 1s the axial displacement coefficient at x, = 0.
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"Blimination of viCii, ¢) from equations (2¢) and (24) yields

Beui(xi, qD

a¢d

vy, ) 1 daslo)
ox B

1
5 Gt; o R

Substltution of equations (1a), (1c), (14), and (4) into this
relationship and integration yields the following expression for
the radlal displacement coefficient:

3.3 22 . 2
ey + 1) + T (0) + w(0)

GERZ, 'y R

Xy
W, X = a
in i) Gti in

in vhich win(o) is the radial displacement coefficient of the
sheet. of bay i at X = 0. -

Appropriate changes of the subscripts 1 1in equations (3)
to (5) permit the application of the equations to each bay of the
structurs.

Ring deformations.- The radial displacement et eny point )
of a symmetrically loaded circular ring can be exvressed as the
Fourier expansion (see pp. 208 and 209 of reference k)

Erri(cp)] ring = Z (Win)ring cos ng

n=2

It can be shown by the method -of virtual work (pp. 209 and 210

of reference 4) that for inextensional deformation the radial dig-
Placement coefficient (?in)ring for a ring of radiue R and

(5)
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constant moment of lnertis Ii - that is loaded by the shear flows

in bays 1 and 1-1 and by an srbitrary set of symuetrically applied
external forces is (fig. 1)

Bt ain - 21-1,n
\in )rlng I o2 - )2.+ %1 - ®

In equation (6) the first expression on the right-hand side repre-
genta the part of the radisl displacement coefficiemt due to tho
correction shears only, whereas the second expression represents

the part of the displacement coefflicient due to the extermal loasding
and the slementary shears. Values of Cyn arc givem later for

particular loadings. (Sce equations (232).)

Continulty relationships.- The following expresslons can be
obtained from continuity comnsideretions of thoe rings and sheet of
beys i-1, 1, and i+l (fig. 1):

ﬁi-l,n(Li-l) = 03n(0) (7)

Gin(Li) ?_°1+1,n(0) : (8)
w3, n(le-1) = wp0) (9)
uin(Li) = %y 7, 5(0) (10)
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Wi-l,n(o) = (wi-l’n)ﬂng ]
> (11)
Wi—l,n(Li-l) = (Win)ring
Win(O) = (Win)r-ing -
> (12)
win(Li) - (i, n)rin8 J
Wi+l,n(o) = (wi"'l’n)ring ]
s (13)
W3.+l,n(Li+l) = (wi+2,n ring

Equations (7) to (10) are conditions of contimwity of o and u
across the boundaries betwsen bays 1-1 and 1 ard between bays 1

and 1+l. Eguations {11) to (13) state that the radlal deformations
of the rings bounding bays 1-1, i, and i+l sre equal to the sheet
deformations of these bays at the rings. Implicit in equations (11)
to {(13) is a statement of the continuity of w of the cylinder
across the boundaries bebween bays.

Recurrence formmla.- Substitubtion of the expressions for
cin(xi), uin(::ci), Win(xi)’ and (vin)ring (equations (3)

to (6), respectively) in the continuity relatlonships (equations (7)
to (133) yields the following seven simultansous equaticns in
‘WhiCh = 2, 3, "l" e 8 .
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nhy .3 o B
91a(®) = 91-1,0(0) + ey 0 -
]
XLy
Gi+l,n(0) N 04,(0) + RE ' 8:n =0
1
Ly -1 et
25(0) = 153 n(0) + Tmer, i Le _-;,;—01-1,11(0) =0
2
nly Ly
u 0) = 0) + a = g, {0) = O
1+l,n( ) u‘in( ) cERG'. W® 3 in< )
g* 83p - @ i-Ln nly-3 n3Li--13
= i-1,n €1-1,n
Gt s 2 ’
n(n - 1; i GER"G 'y 1
T N NS
cER  o4-l,ntY F T Meln
L BY 2in@ean ] > (14)
EI 2 + 1'1)1’}.
1-1 n(n2 - l)
R 84+l,n " 4n E..Li .. n%Lij_a
BT I+l,n gt * 2 in
1+d n(n - l) CER"E "y
2r 2 2 .
n°Ly Ly R 8in " 8i-1n
+ —— . (0) + u, (0) + L= 4 C
2ER 1a(®) 1() L, 2 - 1)2 in
B* 854+2,n i+1,n nly 1 n3Li+l3
Py 342,n = i+l,n T ~ i+l,n
Bl (2 - 1) TGy TR gERPer, g
2 2 2
Nl 0Ly,
T om °1+l,n(0) + u'i~z-l,1'1(o)
. BY 81410 " fip
~ i+l,n
ETX = ?
1+k n(ne - l)
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If the six quantities o,_; (0}, ,,(0), °i+1,n(°)’
2
“1-1,n(°): uin(O), and ui+l,n(0) are eliminated from the

seven expressions of equations (14), the following recurrence
formula relating the Fourier coefficients a of five successive
bays is obbteined:

5 .
- he! i_"l I3.3  6Bg-3 -0\ Y
®1-2,n *8-1,n L ¥ =

? Ii -1 {_Ii"l Ii 6A’i -17 Ii

in
I It Lo 64y X R R e U
Vo~ v B - n:“ v
+ay g RN WY Tivl 1+l 1421 3
At i I Ii.n T\ Tauo
1+1 i+l 142 +17 i+

in vhich

1/ Dy Lgeyr
U, = 5 2 + 1
T, Ly;1 Dysz

13
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v, = -k (: R R RN L% N

L2 \L14l  Taal Iy
ROy,
A, =
3
LT,
Et 4R
Bi= 8 2
Gt,Ly _
7 = 2

nZ (n"a' - ZL)‘£

If the cylinder is of uniform constructiom, equation (15) can
be considerably simplified and reduces to

81-2,n * “¥n831-1,n * Ppfin + BV 8441 n + B342,n

- - ' EI
= (ci-l,n 3Cin * Cq1,n Ci+2,n) T (26)
RL"ny

In which
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The recurrence formulas (15) and (16) relete the nth shear-
flow coefficlent of bay 1 with the corresponding coegfficiente of
the two bays on each silde of bd,y i. One equation similar to equa=~
tion (15) or equation (16) can’consequently be written for each
bay of a cylinder, provided that at least two bays exlst on each
gide of this bay. For antisymmetrical loading, eguations (15)

and (16) can be applied if the Fowrier coefficients g are replaced.

by the coefflcients b.

Boundary Equstionsg

Since the recurrence formula applies only to a 'bay having two
bays on each side, incomple‘be or boundary eguations must be found
for each of the two bays at each boundary. Boundary equations,
consequently, are presented for bays m and m-l for a cylinder fixed
at the right of bay m and for bays 0 and 1 for a cylinder free at
the laft end of bay O. (Bee fig. 3.) ' By suiteble combinations of
the bowmdary equatione and by proper menipulation of the subscripts,
“these equations can be used for the analysis of cylinders fixed at
both ends, unrestrairod st both ends, -or u'nrestrained. a'b one end
and Tixed at the other end.

Procedure For d.e:c‘iving bound.ary‘oq;uatiéns;-"i‘he é;enéi‘_ail recur-
rence formule was derived by combining the equations for o, xi),

ring
gensral.. con'binuity candi tions (equa'bions (7) to (13)) and then
eliminating all Fourier coefficients except the a's. In the deriva-
tion of the boundary equations, the defining equations (3) to (6)
are combined in a8 simlilaxr fashion with (l) all of the continuity
conditions (equa'bions (7} to (13)) thaet do not include quantities
in nonexistant Days ‘or rings and (2) the bowndary conditions.

uin(’%_) Win(xi) and (Win) (eq_ua'bions (3) to (6)) with _the_

Thus, for clamped edges (see fig. 3) the boundary equation for
bay m is obtained by combining equations (3) to (6) with the con-
tinulty conditions

n-1,n(Tn-1) =

[
T Q

-1, 0{Te1) = Bn(©)

Vm-1, n(0) =

l
N
B
\.l'-"
£
H
=)
1]
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.Wm-l,n(Lm-l) =‘-(""7m i ngl

K (O) (%n)ring _

and the boundary conditions

s
.

)0 |

xj ...-.- - '. - _ UMI(LIE) = 0 |

S
[}

. aﬂd 'then eliminating all the Fourier coefficients e,xcept the a's.

SRR Boundary equations for fixed end < If the fo:;'egoing procedure
is followed, the boundary eguation for bay m (fib. 3) is found to

'be_ .. . Lo . 1

I : o . - 5 :
- ey . III]"'l GBE -1 -1 Ho
< %m-2,n(7 * 8%n-1,n ¥ 6A, "3
BN Im' L w2’ Jom

j -
Lo GBm - n =1
P8 I 6“)37 7
v FRAACTE K I
. : . .
) R B . ’

. |
=" [“1°m~1,n ) (“1 * “e)gm];zf— (17)

in which ' .

I
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13 =——l—-2Lm + 1
2 1,2 \Fm-1

3 1 E2\Ig
m

and similarly for bay m~1

( u, iy Ip-p 6Bpo -n°\ ug
- - — ) + _ —[1 -
&m 3,11\1111"2) am- E;n Im_2(+ Im—l ¥ 6A >-i Im-]_

m~27

| _ 2
"~ 8pea -EE—+ “5€+Im-l , Py - m + 28, i
o1 Tl Iy 6817 I, 2T,.A, 17

+ (u5 + u6>0m,;]—%—— (18)
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" 1 (w2 Ige
h Lo \fm-1 I

Lyp-1  Lpep
+

1 /L

-2
p_6=——-—- — 1
Ty \lin-1 >

B, = = I'm-l +-Lm-2+1';n-;2+9
T\ T Lm'-‘}

For cylinders of uniform construction the fixed-end boundary

equations (17) and (1.8) for bays m and m~1, rospectlvely, reduce to

.an%-Q,.n + ..(2711 - l_)a'm-l,n + (a{an -2y, - G)amn

.o\ BT
={C__ "~ he —
.(_ml,nlz. m31|7~

®m-3,n + 87 w-2,n + “Pope1,n * (Zyn + l)a‘mn

EX

Rr*

= (_Cm-2,n = 303, n + 2€
. ny

—

(19)
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For antisymmetrical loading the Fourler coefficlents a iIn
equations (17) to (19) are replaced by the corresponding coeffi-
clents ©b.

Tn order o apply eguations {17) to (1%) to the left end of a
cylinder, the signs of the shear-flow coefficlents mst be changed
and the subscripts of the various terms altered. If the cylinder
of figure 3 is fixed at the left of bay O, subscripte m, m-1, . . .
are replaced by 0,1, . . ., respoctively, for those terms pertalining
to the sheet of the bays and by 1,2, . ..., respectively, far those
terms pertainlng toc the rings.

Bowndary equations for wrestralned ond.~ The boundary equa-
tlons for the wnrestralned end of the cylinder shown In figure 3
arc also found by followlng the proceclure outlined. The boundary
condition at the free edge 1s

crOn(o) = 0

The boundary equation for bay 0 is found to be

A 6By - n~ Ao A
aOnl:—]—'-Il+E4- ZA +—‘:+ﬁ 3/\
o\ L Ao¥ T =hobe?
!A'l Ao I 6.‘Bl n~ Ao
-aml—-+-—-l+-£:+ aa t 8p f
1 DL\ e . Oy I
R - R
= {_R]_COn (Rl + Le)cln + }\'ECEn]—T;-‘— . (20)
Ry
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In vhich

.i

|
|

A:rnz

57 Ap I, 6B -n
"I A 7 + aJ '-:E- l + ——
“Lotn 1 Iz 6A17’

NACA TN No. 1219

A A
P P
I,  2I,Ay7

—— (21)
7
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where
1
Ny 2 ——
L
Lyl
L% \F1
T
x6=—-:5— £
Ll2 Iy

Por cylinders of uniform construction the umrestrained-end

boundery equations (20) and (21) for bays O and 1, respectively,
are

EI |

(27n + 2B+ 1)a0n + (2yn + :L)aln# 8y, = - (ccn =20, + C ;1-1-1-7-

BI
27na0n + Eﬁnaln + 27n32n + a3n = (cOn. - 3Cln + 3(:2[1 - C3n)—l;—

: For antisymmebrical loeding the coefficients & ars replaced
by b in equabions (20) to (22). In order to apply equations {20)
to (22) to the right end of a cylinder, the signs of the shear-
flow coefficients must be changed and the eubscripts of the various
terms sultably altered. . .

Special boundary equations.- The boundary equatlons dsveloped
are suttable for cylimders having four or more bays. For the
speclal case of the center bay of a three bay cylinder, the boundary
equation, which depends upon the conditions at both boundaries, can
also be found by mesns of the general procedure previously outlined.

The boundary equations for cylinders of one or two hays can be
similarly derived.
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Application of Recurrence Formula and Boundary Equations

Specific loadings.~ As mentioned previously, the stress

analysls of a reinforced cylinder arbitrarily loaded in the planes
of the rings can be carried out conveniently if the stresses caused
by the symmetric and antisymmetric components of the extermal
forces are suitably combined. Further simplification of -the
analysis is obtained if the loadings are resolved into concentrated
radlal forces, concentrated tangential forces, and concentrated
bending moments. For each ring loaded at ¢ = 0° (sec fig. 4) the
load function C4,, obtained in the derivation of eguation (6)

for (win)rin » Tfor a concentrated radial force, a concontrated
g

tangential force, and a concentrated bending momont are, respec-
tively,

Tin R EI

Ot~ T | > (23)

Cmin -

i Mci(n2 - _l)_ Ry

EI;

ﬂRE

where P, T, and M, ere the symmetrical radial load, the anti-

symmotrical tangential load, and the antisymmetrical bending-moment
load, respectively, acting on any ring i at ¢ = 0%,

Simultenocous eguations.~ A typical set of equations applicable
to & cantllevered uniform cylinder with six bays (m = 5 in fig. 3)
is presented in teble 1. The first two and last two rows wore
obtalned from the unrestrained-end and fixed~end boundary relation-
ships of equations (22) and (19), respectivoly, end tho inter-
medilate rows were obtained from the recurronce formuls of oqua-
tion (16). For a nomumiform cylinder theso oxpressions are
roplaced by those of equations {20), (1), (18), 17), and (15).
It 1s to be noted that the coefficients of the unknown a's
and b's are indopendent of Cyn (load term of cquations (23));
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consequently, numerical solution of the equatlons (reference 5)

for various loadinge is greatly faciiibated. A sobt of simultaneous
linear equations similar to that of table 1 muat be solved fer
each n-value chogsen. The number of n~values requlrsed depends upon
the desired accuracy. The Fowrier coefficlents obtalned for a
given load P, T, or M, at ¢ = 0° can be used to determine

the coefficionts for similar loads et any other valus of ¢ since
the z-axis (fig. 2) can be chosen to coincide with any radius.

Stresses and loade in cylinder.- After the coefficlents a

and b are computed, substitution in the formulas (Al) to (Ak)

" presented. in appendix A snables the stress analyst to compute the
shear f{low In the actual sheet, tho direct stress in the fictitlous
sheet, and the momenis, shoars, and axial forces in the rings. The

" stresses due to loads acting at several rings and at various values
of @ c¢2n be superimposed to give the stressos caused by these
loads scting simultancously.

APEROXIMNEE METHOD OF ANALYSIS BY SOLULION
OF FINITE DIFFERENCE EQUHTIQN

Difference-Equation Solution for Infinitely Long Cylinders

Equation {15) referred to previously as a general recurrence
Tormula 1s also a fourth-order finite difforence equation with
variable coefficients. B8ilnce the variable cocefficients prohibit
the solution of this equation in closed form, only the solution of
the equation that pertains to a uniform cylinder is discussed
herein. A general procedure for solving the fourth-order finite
difference equation with constant coefficients (ses cquation (16))
is presented in reference 6. Whon the right-hand side of cqua-
tion (16) is sot equal to zero, the following homogeneous egquation
is obtained: ol

ai"'E,n + ‘27n&i,l’n + EBnain + Eynai_’_l’n + 51+£’n = 0 (2}4—)

From reference 6, the general solution of this hamogeneous eguation
conslsts of the followlang six indopendent solubtions: for
P ey Y

= > and 7n.< 0]

’n
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for

a:I.n
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e ﬂyﬂk

(m].n cos k’)(;n+ @, sin k’)(.n)

Yk ,
+ e (a.3n cos k:')(,n+ @, sin lcxn) {25a)

Dn>l and 7, >0

a.’Ln=(

- & ‘
-1)%e Yo (u‘ln ‘cos k')_(,n+ o, sin k:')('n)

+ (-J_)ke%k(a?’n cos _k’)(.n+ @, §in k'X,n) (25b)

for Dy, <1 and 7, <O

8in

= k
e O (uln cosh kpn + O sinh kpn)

'\l_.' k .
+ e B (“3n cosh kp, + oy  sinh kpn) (25¢)

for D, <1 and 7, >0

for

for

o
]

pw
It

- (-1%k "‘!’nk y -
8yp = (-1)*e (d‘ln cosh kp  + o, sinh kpn)

b k ’
+ {-1) ko' (d,3n cosh kp_ + o5 einh }:pn) (254)

1l and 7n<o

84n

==

_e-\lfnl_:(cr,ln + -ocznk) + e‘!‘rnk(cl.rgn + ;x‘q-nk) (250)

1l and ')’n}O

Q4n

(—l)keﬂ{;nk(‘ooln + a.ank) + (~J.)ke\ynk<oo3n + d’hnk) (25

f)
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2
B, - 1 B, + 1 P
-1} Pn n
h + -7
cos 5 \/( 5 ) n

2

-1 BIJ. -1 C."}n + l) )

cos = =7
2 2

in which

5%
I
o

2=
i
s

o]
I
ol
O
2
=3
t
[t}
5
H
l.J
o>
H
+
'_.l
\.._,/m
]
t;e
)

k=i=o’l)20 L

and Gpr g “3:1’ and oy, are arbitrary constants.

The analysis of a uniform cylinder that exbends longitudinally
to infinity in both directions from a loadod ring is readily carried
out with the aid of egnations (16), (2%}, and (&5). If the loaded
ring is considered to be a boundary between tile two halves of the
beem and if no load other than that at the boundary is assumed to
act, the difference equation (16) with the right-hand side set .
squal to zero applies equally well to vokh rarts of the cylinder
(see fig. 5) j consequemtly, only one-half of the cylinder need be
considered in the analysis., Since the difference agquatlon
applicable is the homogeneous equation (2h), equations (25)
together wlth the appropriate bowndary conditions are solutions of
the present problem.

The distortions caused by the concentrated load have no effect
on the stress distribution in the cylinder at % = w ; therefore,

Bp = 0+ ‘The first term on the right-hand side of each of equa-

tions (25) eatisfies this condition; howsver, the .Becond term does
not satisfy this requirement and, hence, must vanish. The golutions
then that are compatible with the boundary condition at infinity

are from equations (25): for D, >1 &and 7,< 0 -

8 = o nk(“ﬂn cos k')(,n+ o, sin k-’)(,.n) (26&)-
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for

Tor

for

for

boundary equations appliceble to the present problem.
load function at the loaded ring is designated CO (see equa-

tions (23)) and equatlon (16) is written for bay O, the first

NACA TN Ko.

D, >1 and 7, >0

D, <

D, <

o
1

ag, = (—l)ke-\ynk(&t}n cos k’Xh+ o, 8in k?(‘n)

1 and 7, <0

“Ypk ' .
By, = © (a'ln cosh kpn + Cop ginh kp n)

1l and 7n>0

e k . .
(-l)ke \ljn (aln cosh kpy + 0, &inh kpn>

ain

1 and 7,<0

oun = & gy + o)

1 and 7n>o

- (05 )

From the conditions of symmetry about the loaded ring,
modification of equation (16) leads tou the determination of two

boundary egquation is

(_zgn - 27, Yao, + (2711 - l)a]_n + Ay = ~30y, <

If the

1219

(26b)

(26c)

(264)

(26e)

(26f)

(27)
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a. If equation (16) is written

for bay 1, the second boundary equaticn is seen to be

since &,, = "a_,, end a;, = -

BT
POV = . 28
(27, = L)ooy + 2881, + 278, + 85 = Con e (28)

glnce a = =g «
On -ln

The boundary equations (27) and (28) permit the determination
of the arbitrary constents Oy and Gy o For a given value of n,
qp Trom equations (26)

into equations (27) and (28) yields a sot of two simultensous equa-
bions; for example. if D, >1 and 7, < 0

substitution cf the appropriate value for a

(=4

%[(?.Bn - Eyn) + (27n - l)e-.\pxL cos ’X’n +e B cos E’X,n]

. 2y .
+ a,antie%_ - l)e Pein +e Tain 2’)(,4—_- - 3Con -1;-:5—
R*ny
r _ (29)
' . - - =3V
“’111] .E7n- 1) +2B 0 B cos 'X,h+ 27’ne Zq!n cos ?’h+e % cos 3%;]

- E\t}n M —3\[{1 EI
on n r ~ i - -
+ a‘2n<f‘?’ne sin X’n+ 2y, e sin Zf, +o sin 3% a)= Con ﬁ;

The constants ey and. Oy, are obtained from the soclubion of

these equations. To each value of n there corrogponds one value
each for Ly and oy * Since D, and 7, are funchtlons of n as
woll as the elastic properties of the cylinder, for a particular

cylinder more than one of equations {26) may bd required for the o =
determination of all the values of ay, and 0o+ With the values

of these constants determined for each value of n, corresponding
values of a;, for each bay are obtained from equdtions (26).
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As in ‘the espplicatilon of the recurrence formula, a's corre-
sponding to several harmonics, that is, n varylng from 2 to the
value that yields the desired accuracy, must be found. For anti-
symmetricel loading, a 1s replaced by b in equations (24)
to (29). The values of the coefficients & and b obtained are
substituted in eguations (Al), (A2), and (Ah) for tho desired load
values. BSince the expression for the direct stiess in the sheet
now involves an infinite summation along the cylinder of the shear-
flow coefficients, sgimplified Tormules for the direct stresses at—
any ring k are presented in gppendix B.

If equations (27) and (28) are replaced by the unrestrailned-end
boundary equations (22), with all values of C,, except Cop sotb

equal to zero, a tip loaded cylinder extending to infinity in one
direction can be analyzed with a procedure similar to that developed
herein.

Applicetion to Finite Cylinders

Whereas & concentrated load causes distortion In the region
in the immediste vicinlty of the load, for most practical purposes
the part of the cylinder a few bays away Trom the load can be
agsumed. undisturbed. Consequently, i1f the load is located a
sufficient distance from extermal restraints, the distortions of
the cylinder in the region of the load are independent of these
rogtraints. If then & wniform cylinder of finite lemngbh is to he
analyzed and this cylinder i1s losded in a manner such that the
load is not in the proximity of an external rostraint, the ele-
mentary stresses and loads are found ds usuel by considering the
cylinder to be finite, whereas the correctiang may be found by
use of the difference-equatlion method by consldering the cylinder
to be infinite. Boceuse the effoct of the. concentrated load
dlssipates quite rapldly, volues of & and b are ususlly of
interest only for those bays in the vicinity of the load. The
desired forces and moments in thils reglon can then be dstermined
as before from the equations glver in appondixes A and B.

Adsquacy of Difference~Eduation Soclution

Although the solutlon in closed form of the problom of a
uniform reinforced circuler cylinder is exact only for infinitely
long cylinders symmetrical sbout a losdod ring, comperisons of the
finlte-difference~oquation solution, tho recurronco-formils solution,
the standard solution (referonce T), and cxporimental data For
cylinder 2 of reference 3 wore made fdr a cylinder Tixed at one
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end, unrestrained at. the other, and” havin.g only For 'bayb._ The
cylind.er amg loaded with a. concentrate& radial; force Et a ring
located: two. bays’ from eack end. ' (See-fig. &) Ia’ figures T and 8
curves" arsgiven for”bending moments in- the - oaded ring and. aa.Jacen'b
~rings as vgll.as .for the sheer flows in- the'- uwo ’bays ad;;acent ‘to
4he loaded: ring.. -InasmuchH a8 the gylinder con'balns re’latively
few bayd; an extreme case is represented tnat 19 anlikely to be”’
met. i prectice.  The more bays a- c:y'lina.er Had the more closely
it aepproximates an infinite cylinéer for whi ch '[:he finite-~difference-
equation sgolution is.exact; co‘nsequently, ,the 500& agreement shovn
in figures.T.and 8 among the f;nite-diherence*equation solu'tion, .
~ the recurrence~formnla solwution: ‘and” experﬂe"xta,l aata’ :Lnd.icatee )
that ’che s:lmplified. solu.tion is: qu.i‘be aﬁeq_uate. - . .

U R

Advaﬁtages of Diff'erence-Eq_uation Soluation

Since airplane fuselages Approximaty no circalar cylind,ers ére
composed of a relatively larpge mwber: 6f - b.‘ys “For’ mcss'b practical
cases, the eimplified sdlution.should be a good approximation to
that obtained by the use of the rscurrence formula. As mentioned .
previously, when the recurrence formula is applied, sets of
gimulteneous equations containing as many unknowns as there are
bays in the structure must be solved for each n-value required.

For structures having many bays the amount of compubations involved
may be prohibitive; however, no such computations are involved when
use is made of the infinite-cylinder solution. In addition, this
solution is adaptable to the construction of design charts similar
to Wise 's charts of reference 7. The analysis of any long uniform
cylinder is dependent only on the values of the gtructural
paremeters A and A/B. For various representative values of
these parameters, charts can be constructed from which the analyst
can determine desired stress coefficients. For extreme cases, such
as a cylinder loaded only one to two bays away from s restraint,
the recurrence-formula method is recommended for accurate solutions.-

CONCLUDING REMARKS

The recurrence formula developed in the present paper facili-
tates the stress analysis of circular cylinders loaded in the planes
of the reinforcing rings. The cylinders can be composed of bays
of different cross sections and lengths and cen be supported by
rings having different moments of inertia. The boundary equations
bresented are applicable to cylinders fixed at both ends, unrestrained
at both ends, or wnrestrained at one end and fixed at the other end,



30 NAGA TN No..1219 .

'For the analysis of cylinders composed of relatively: few
bays, 3% is recommendeéd that. the recurrence formula-be used to, ' -
obtaln sets:of simultansows lineayr algebraic-equations. -The-- .
"golutiong of these equaticie leasdrtouan accurate: determination of
the Btresses:in the rirgs.and sheet of-the cylinders. The analysis
of cykinders:composed of many bays, ds are. semimdnocogue fuselages,
can more ‘converniently be accomplished by tite -molukion of the .
recur¥ence ‘formula.ds & finibte.difference equation. .- Although the
- ptresfes obtalned wlth this.solution 'are . dpproximetions to -the
more: accurate .gtregses found vith the simultane ous. equatione, for
long.cylinders ‘the_computations involved are congilérably shorter.
In addition, isincé for the three basic loads the.stresses .determined
by this method are dependent only upon the 'stiuctimal ‘paremeters
of the cylinder, charts facilitating the rapild determination of
the stresses In reinfordéed cylinders can be readily constructed.

Langley Merorial Aerorauticdl Labowmtory - = vl e
- Netional Advisory Committee for Aerodautics = .- . = . oo,
+  Langley Field, Va., November 1&, 194G . :iivo: ¢ n.i
. I
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APPENDIX A
FORMULAS FOR LOADS AND STRESSES IN CYLINDERS

After the coefficlents & and b are computed, the shear
flows in the actual sheet, the direct stresses in the fictitlious
sheet, and the bending moments, shears, and axial forces in the
rings can be found with the aid of the equations - ziven in the )
appendix of reference 3. For the sake of completensss these equa-
tions, with some additions, are presented herain.

Shear Flow

The total shear flow qi(cp) in any bay i for any ring
loading on a cylinder can be expressed as

& (o]

Qi(cp)=qﬁ+zlainsinncp+2b1ncosmp (Al)_

In vhich e represents the elemenbtary shear flow calculated on

the basis of rigld rings. For a cantilsvered cylinder, an is

zero for those bays located between the tip and a loadsd ring. For
those bays between a loaded ring and the root the vglues of qR

for a radial load P, a tangential load T, and a concentrated
ring bending moment M each applied to rinz 1 at ¢ = 0°, are

given in table 2. Positive forces and bending moments are indi-
cated in figure 4. If more than one ring is loaded or if the
cylinder is not of cantilsever construction, P;s Ty, and Mg 1

are replaced by the resultant radial, tangential, and moment load,
respectively, acting on & cross sec'bion of bay 1.

Direct Stress in Skin
For a cantilevered. cylinder such as that shown in figure 3,
if the longitudinel skin stress at ring O is agsumed to be zero,
the direct stresms at rins 1 is (see equations (1b) and (3))
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[s2]
1\ Iy Ly-1
ci(o, ¢)=UR-§L aOn'{?(;+aln%'7I+ .. '+ai'l:r}t'i_l ncos ny
n==2 __
+ = Zgj b b e nein np (A2)
On -[-,' P ln-t' coeoe ¥ i-1,n tli"l nsein np

in which oR is the sitress given by the simple engineering theory

of bending. Since the shear stress 1s constant in the longitudinal
direction within a bay, o varies ljnearly between rings.

If the cylinder is rigidly fixed at ¥ing O as well as at

o

ring m+l, the initial boundary stress Z %on (0) cos no (for

n,_._ .
symuetrical loads) must be added to the direct stress obtained with
equation (A2). The value of the Fourler coefficient cOn(O) is

determined for a cylinder having at least thres bays from the con-~
tinuity condition " =

WOn(LO )= _(Wln)ri%
and the boundary conditions

Uon(©)

N
o

!
[}

Wy (0) =

together with the defining equations (5)- and (6). The relationship
obtained is : '

, 2ToA 'Y €By ~ n*° ET
.Uon(o)?—l'{t—’-g—‘aonl+' Or' +aln+—]-'—Cln ' (A3) -
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in which
6.
At - Rt g
o 3
ko
For antisymmetrical loading, ao_l and aln are renlaced

by by, and by,, respectively.

Bending Moments and Forces in Ring

The bending moments, shear forces, and axial forces in the
reinforcing rings of a cylindsr arbitrarily supported at its ends
are, respectively,

© © 0o, ‘
. 8444 " A4- z Pipn ~ By
Mi=l\&%+REZ in il,ncoan)_Re, in il’nsi.nnfp
n=2 n(n2 - l) n=2 n(:).2 - l)
' 84y, ~ 84. Y by, - bsil
vi=vR-RZ 12 1l’nsinnq>-R|Z I 37LDoosmp 5 (al)
o (2 - 1) = (-2
o =]
n{a ay.. ) S nib bi.
H1=HR+R \ina 1,n cos np ~R (ine iln)sinn(p
=2 (n - l) n=2 (n - l)

in which M., Vi, and Hp are the bending moment, shear force,
and axial force in the rings, respectively, determined on the basis

of elementary shear flow in the skin. Positive values of the bending

moments and loads in a cylinder ave indicated in figure 4. Formulas
for My, Vg, and ~Hp corresponding to a radial losd P, a tan-

gentlial load T, and a concentrated ring bendinz moment Mc, each

applied to a ring 1 at ¢ = O°, are glven in table 2. For rings
not loaded extermally, only the series expression in equations (Ak)
are required.
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APPENDIX. B
DIRECT STRESSHS IN INFINITELY LONG CYLINDIRS

For the determination of the direct stress in the skin of a
uniform infinitely long cylinder, equation (AZ) can be replaced

by

o k
=)
c.(0 = O 4 e a,. n cos Bl)
i( ) CP) R RG L in .n:p (
n=2 i=co
or
© s g A
L \ [\ | e
oi(o, Q) = op + s 2\ 4 ®m " 8..] n cos np {Bx:)
n=z “i=0 i=C

in vhich only the coefficlents 84n are considered. In these
egquations, ci(o,. ) is the direct stress at »ing 1=k. Corre-
sponding to the six values of 8,, from eguations (z6), six
solutions for o¢;(0, @} can be determined by svmmation along the

cylinder. As an illustration of the proceduse iavolved, equa-~
tion (6a) is used herein for the velue of a,.+ Conseguently,

equation (B2) becomes

[+ [+>]
SN : ,
ci(O, ®) = op + i% s E: o B (aln eos l;_'X,n Gy, B1n kX,n)
k1
-\r k
- Z o 11’n (qln cos k")(,n-r-or._,_n sin 1:%:1)}n cos no (B3)

1=0



The aummations from i =0 % 1=o end 1=0 to i=%k~1 are readlly accomplished with
the eld of formilas 6.830, 6.833, and 3.51, numbers 1 and 13, of refersnce 8. The resulting
formila Por the direct gtreas at any ring k 18 for Dn > 1, 7,< 0, and i=k=0,L2, .. .

ST2T *ON NI YOyN

. (.-0 ’ )_ _I'_ f; Wnkd.]n‘-e\lln col kr)(,,n'cos (k- l) XJ;J +a2n I;‘l’n ain kxln_sin (k" l) X,IJ

3\ Y=gt L ° n cos ng
£ e £R% ) cosh W - cos X’n

| (Bk)

With a procéd.ure analogous to that used for the determination of thim equetion, the followlng
solutions are obtainsd for the direct stresses correcponding to the remaining five valuss of &y}

for Dn>1 and 7n>0

- GE



o]
=
y ok %n °

0,{0, CP) =0Op + (-1)' ol
. n==

for'])n<l and 7n<0

[+2]

RN

coe

KN+ cos(k-l)x +a ol I— Bsin KX, + sin(k-l)'x.n'

cosh W

\_‘_" _ ‘ l’ ' . ‘!
A 'k Gn o Teosh kp, - cosh(k-l)pn] +a.2nke"Iﬂsinh kp,, - sinh(k-1)p,

o+ COB 'X,n

L Te

Rt TE—
n=:

a,(0,9) =og +

Tor Dn<l and Tn>0_

d (O,q:) ch+(-1) oy

coah \{rn

1 I
'nk c:.]n[e%cosh lcpn+co5h(k-1) pn] oy P’rnsinh kpn+sinh(k-l)an

-~ cosh pn

]

= n co8 I

N2 cosh \bn + cosh p n
for Dn"‘ 1 and 'fn< 0
s l - -
LT Sk ple™ )+ “ﬂm!k"% - (- )]
04(0,0) = o + —— = . n cos
C R E’Rt'f—,. ecosh & - 1
=g n
for Dn=l and, ‘)’n>0
k. L
L T Yk o:ln(ev'l + l) cn!'ke + (k - l)]
ag (O;CP) = Oy + ("1) —ncn e .
i R ERtl
) cosh \p‘n +1

If the coefficients b
to {B3).

s BTe consiGered,

n cos np (B5a)

=~ n cod np (B5b)

n coe np {B5c)

(854)

(858)

cos np 1is replaced by -sin ng in equations (B1)
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TARTE 1.- CBNNRAL SCHEME OF BQUATTONE FOR UNIFORM CYLINTER (F SIT BAYS
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TABIE 2.- EIFMENTARY SERARS, BEHDING MOMERTS, AND LOADS IN CYLINDER
CORRESPONDING TO BASIC RING LOADINGS

[S1en convention shown in f1g. & |
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Figure 1.— Part of typical cylinder.
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Figure 2.~ Coordinate system for typical bay.



NACA TN No. 1219 Figs. 3,4
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Figure 3.~ Side view of cantilevered cylinder.
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Figure 4.— Sign convention used in Gno\ysis.
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Figs. 5,8 - - NACA TN No. 1219
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Figure 5.~ Loaded part of infinitely long cylinder.
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Figure 6.~ Side view of cylinder 2 andlyzed in reference 3.



NACA TN No. 1219
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Figure 7.— Comparison between cdlculated and experimental ring-bending

moments for cantilevered cylinder.



Fig. 8 NACA TN, No. 1219
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